

Welcome

libuca [https://github.com/ufo-kit/libuca] is a light-weight camera abstraction library written in C and GObject,
focused on scientific cameras used at the ANKA synchrotron.

[image: _images/architecture.png]

Contents

	Quickstart
	Installation

	Usage

	Supported cameras
	Property documentation

	Application Programming Interface
	Instantiating cameras

	Errors

	Recording

	Triggering

	Grabbing frames asynchronously

	Bindings

	Integrating new cameras

	Asynchronous operation

	Cameras with internal memory

	Tools
	uca-camera-control – simple graphical user interface

	uca-grab – grabbing frames

	uca-benchmark – check bandwidth

	uca-info – get properties information

	uca-gen-doc – generate properties documentation

	Concert
	Installation

	Usage

	Remote access
	TCP-based network bridge camera

	GObject Tango device

	Python Tango server

Quickstart

Installation

Before installing libuca itself, you should install any drivers and SDKs
needed to access the cameras you want to access through libuca. Now you have
two options: install pre-built packages or build from source.

Installing packages

Packages for the core library and all plugins are currently provided for
openSUSE and can be obtained from the openSUSE Build Service at
https://build.opensuse.org/package/show/home:ufo-kit/libuca.

Building on Linux

In order to build libuca from source, you need

	CMake,

	a C compiler (currently tested with gcc and clang),

	GLib and GObject development libraries and

	any required camera SDKs.

For the base system, install

[Debian] sudo apt-get install libglib2.0 cmake gcc
[openSUSE] sudo zypper in glib2-devel cmake gcc

In case you want to use the graphical user interface you also need the Gtk+
development libraries:

[Debian] sudo apt-get install libgtk+2.0-dev
[openSUSE] sudo zypper in gtk2-devel

To generate bindings for third-party languages, you have to install

[Debian] sudo apt-get install gobject-introspection
[openSUSE] sudo zypper in gobject-introspection-devel

Fetching the sources

Clone the repository

git clone https://github.com/ufo-kit/libuca

or download the latest release at https://github.com/ufo-kit/libuca/releases and
unzip the .zip file:

unzip libuca-x.y.z.zip

or untar the .tar.gz file:

tar -zxvf libuca-x.y.z.tar.gz

and create a new, empty build directory inside:

cd libuca/
mkdir build

Configuring and building

Now you need to create the Makefile with CMake. Go into the build directory and
point CMake to the libuca top-level directory:

cd build/
cmake ..

As long as the last line reads “Build files have been written to”, the
configuration stage is successful. In this case you can build libuca with

make

and install with

sudo make install

If an essential dependency could not be found, the configuration stage will
stop and build files will not be written. If a non-essential dependency (such
as a certain camera SDK) is not found, the configuration stage will continue but
that particular camera support not built.

If you want to customize the build process you can pass several variables to
CMake:

cmake .. -DPREFIX=/usr -DLIBDIR=/usr/lib64

The former tells CMake to install into /usr instead of /usr/local and
the latter that we want to install the libraries and plugins into the lib64
subdir instead of the default lib subdir as it is common on SUSE systems.

Building on Windows

Using MSYS2, the build procedure is similar to Linux but differs in some points.
First, download msys2-<arch>-<release-date>.exe from msys2.org [https://msys2.org/] (preferably the x86_64 variant) and install it to
C:\msys64 or any other location.

Run the MSYS2 MinGW shell from the start menu and update the core if this is the
first time using:

pacman -Syu

Close the terminal and open a new shell again. Install all required dependencies
with:

pacman -S gcc make cmake pkg-config git glib2-devel gettext-devel

Clone libuca and any plugins you want to use on Windows:

git clone https://github.com/ufo-kit/libuca

and create an empty build directory in libuca’s root folder. Change
directory to that folder, configure libuca using CMake and build and install it:

cd libuca
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr ..
make && make install

Before proceeding with the plugins you must soft link the library to fit the
naming scheme:

ln -s /usr/bin/libuca.so /usr/lib/libuca.dll.a

To build plugins nothing special is required. Clone the repository, create an
empty build directory, configure and build:

git clone https://github.com/ufo-kit/uca-net
cd uca-net
mkdir build && cd build
cmake ..
make && make install

Usage

The API for accessing cameras is straightforward. First you need to
include the necessary header files:

#include <uca/uca-plugin-manager.h>
#include <uca/uca-camera.h>

Then you need to setup the type system:

int
main (int argc, char *argv[])
{
 UcaPluginManager *manager;
 UcaCamera *camera;
 GError *error = NULL; /* this _must_ be set to NULL */

#if !(GLIB_CHECK_VERSION (2, 36, 0))
 g_type_init();
#endif

Now you can instantiate new camera objects. Each camera is identified
by a human-readable string, in this case we want to access any pco
camera that is supported by
libpco [http://ufo.kit.edu/extra/libpco/html/]. To instantiate a
camera we have to create a plugin manager first:

manager = uca_plugin_manager_new ();
camera = uca_plugin_manager_get_camera (manager, "pco", &error, NULL);

Errors are indicated with a returned value NULL and error set to
a value other than NULL:

if (camera == NULL) {
 g_error ("Initialization: %s", error->message);
 return 1;
}

You should always remove the
reference [http://developer.gnome.org/gobject/stable/gobject-memory.html#gobject-memory-refcount]
from the camera object when not using it in order to free all associated
resources:

 g_object_unref (camera);
 return 0;
}

Compile this program with

cc `pkg-config --cflags --libs libuca glib-2.0` foo.c -o foo

Now, run foo and verify that no errors occur.

Grabbing frames

To synchronously grab frames, first start the camera:

uca_camera_start_recording (camera, &error);
g_assert_no_error (error);

Now, you have to allocate a suitably sized buffer and pass it to
uca_camera_grab:

gpointer buffer = g_malloc0 (640 * 480 * 2);

uca_camera_grab (camera, buffer, &error);

You have to make sure that the buffer is large enough by querying the
size of the region of interest and the number of bits that are
transferred.

Getting and setting camera parameters

Because camera parameters vary tremendously between different vendors
and products, they are realized with so-called GObject properties, a
mechanism that maps string keys to typed and access restricted values.
To get a value, you use the g_object_get function and provide memory
where the result is stored:

guint roi_width;
gdouble exposure_time;

g_object_get (G_OBJECT(camera),
 "roi-width", &roi_width,
 "exposure-time", &exposure_time,
 /* The NULL marks the end! */
 NULL
);

g_print ("Width of the region of interest: %d\n", roi_width);
g_print ("Exposure time: %3.5fs\n", exposure_time);

In a similar way, properties are set with g_object_set:

guint roi_width = 512;
gdouble exposure_time = 0.001;

g_object_set (G_OBJECT (camera),
 "roi-width", roi_width,
 "exposure-time", exposure_time,
 NULL);

Each property can be associated with a physical unit. To query for the
unit call uca_camera_get_unit and pass a property name. The function
will then return a value from the UcaUnit enum.

Supported cameras

The following cameras are supported:

	pco.edge, pco.dimax, pco.4000 (all CameraLink) via
libpco [http://ufo.kit.edu/extra/libpco/html/]. You need to have
the SiliconSoftware frame grabber SDK with the menable kernel
module installed.

	PhotonFocus

	Pylon

	UFO Camera developed at KIT/IPE.

A remote access is available for libuca cameras.

Property documentation

	mock

	pco

	file

mock

	string name

	Name of the camera

Default:

	unsigned int sensor-width

	Width of the sensor in pixels

Default: 512

Range: [1, 4294967295]

	unsigned int sensor-height

	Height of the sensor in pixels

Default: 512

Range: [1, 4294967295]

	double sensor-pixel-width

	Width of sensor pixel in meters

Default: 1e-05

Range: [2.22507385851e-308, 1.79769313486e+308]

	double sensor-pixel-height

	Height of sensor pixel in meters

Default: 1e-05

Range: [2.22507385851e-308, 1.79769313486e+308]

	unsigned int sensor-bitdepth

	Number of bits per pixel

Default: 8

Range: [1, 32]

	unsigned int sensor-horizontal-binning

	Number of sensor ADCs that are combined to one pixel in horizontal direction

Default: 1

Range: [1, 4294967295]

	unsigned int sensor-vertical-binning

	Number of sensor ADCs that are combined to one pixel in vertical direction

Default: 1

Range: [1, 4294967295]

	None trigger-source

	Trigger source

Default: <enum UCA_CAMERA_TRIGGER_SOURCE_AUTO of type UcaCameraTriggerSource>

	None trigger-type

	Trigger type

Default: <enum UCA_CAMERA_TRIGGER_TYPE_EDGE of type UcaCameraTriggerType>

	double exposure-time

	Exposure time in seconds

Default: 1.0

Range: [0.0, 1.79769313486e+308]

	double frames-per-second

	Frames per second

Default: 1.0

Range: [2.22507385851e-308, 1.79769313486e+308]

	unsigned int roi-x0

	Horizontal coordinate

Default: 0

Range: [0, 4294967295]

	unsigned int roi-y0

	Vertical coordinate

Default: 0

Range: [0, 4294967295]

	unsigned int roi-width

	Width of the region of interest

Default: 1

Range: [1, 4294967295]

	unsigned int roi-height

	Height of the region of interest

Default: 1

Range: [1, 4294967295]

	unsigned int roi-width-multiplier

	Minimum possible step size of horizontal ROI

Default: 1

Range: [1, 4294967295]

	unsigned int roi-height-multiplier

	Minimum possible step size of vertical ROI

Default: 1

Range: [1, 4294967295]

	bool has-streaming

	Is the camera able to stream the data

Default: True

	bool has-camram-recording

	Is the camera able to record the data in-camera

Default: False

	unsigned int recorded-frames

	Number of frames recorded into internal camera memory

Default: 0

Range: [0, 4294967295]

	bool transfer-asynchronously

	Specify whether data should be transfered asynchronously using a specified callback

Default: False

	bool is-recording

	Is the camera currently recording

Default: False

	bool is-readout

	Is camera in readout mode

Default: False

	bool buffered

	TRUE if libuca should buffer frames

Default: False

	unsigned int num-buffers

	Number of frame buffers in the ring buffer

Default: 4

Range: [0, 4294967295]

	bool fill-data

	Fill data with gradient and random image

Default: True

pco

	string name

	Name of the camera

Default:

	unsigned int sensor-width

	Width of the sensor in pixels

Default: 1

Range: [1, 4294967295]

	unsigned int sensor-height

	Height of the sensor in pixels

Default: 1

Range: [1, 4294967295]

	double sensor-pixel-width

	Width of sensor pixel in meters

Default: 1e-05

Range: [2.22507385851e-308, 1.79769313486e+308]

	double sensor-pixel-height

	Height of sensor pixel in meters

Default: 1e-05

Range: [2.22507385851e-308, 1.79769313486e+308]

	unsigned int sensor-bitdepth

	Number of bits per pixel

Default: 1

Range: [1, 32]

	unsigned int sensor-horizontal-binning

	Number of sensor ADCs that are combined to one pixel in horizontal direction

Default: 1

Range: [1, 4294967295]

	None sensor-horizontal-binnings

	Array of possible binnings in horizontal direction

Default: None

	unsigned int sensor-vertical-binning

	Number of sensor ADCs that are combined to one pixel in vertical direction

Default: 1

Range: [1, 4294967295]

	None sensor-vertical-binnings

	Array of possible binnings in vertical direction

Default: None

	None trigger-source

	Trigger source

Default: <enum UCA_CAMERA_TRIGGER_SOURCE_AUTO of type UcaCameraTriggerSource>

	None trigger-type

	Trigger type

Default: <enum UCA_CAMERA_TRIGGER_TYPE_EDGE of type UcaCameraTriggerType>

	double exposure-time

	Exposure time in seconds

Default: 1.0

Range: [0.0, 1.79769313486e+308]

	double frames-per-second

	Frames per second

Default: 1.0

Range: [2.22507385851e-308, 1.79769313486e+308]

	unsigned int roi-x0

	Horizontal coordinate

Default: 0

Range: [0, 4294967295]

	unsigned int roi-y0

	Vertical coordinate

Default: 0

Range: [0, 4294967295]

	unsigned int roi-width

	Width of the region of interest

Default: 1

Range: [1, 4294967295]

	unsigned int roi-height

	Height of the region of interest

Default: 1

Range: [1, 4294967295]

	unsigned int roi-width-multiplier

	Minimum possible step size of horizontal ROI

Default: 1

Range: [1, 4294967295]

	unsigned int roi-height-multiplier

	Minimum possible step size of vertical ROI

Default: 1

Range: [1, 4294967295]

	bool has-streaming

	Is the camera able to stream the data

Default: True

	bool has-camram-recording

	Is the camera able to record the data in-camera

Default: False

	unsigned int recorded-frames

	Number of frames recorded into internal camera memory

Default: 0

Range: [0, 4294967295]

	bool transfer-asynchronously

	Specify whether data should be transfered asynchronously using a specified callback

Default: False

	bool is-recording

	Is the camera currently recording

Default: False

	bool is-readout

	Is camera in readout mode

Default: False

	bool buffered

	TRUE if libuca should buffer frames

Default: False

	unsigned int num-buffers

	Number of frame buffers in the ring buffer

Default: 4

Range: [0, 4294967295]

	bool sensor-extended

	Use extended sensor format

Default: False

	unsigned int sensor-width-extended

	Width of the extended sensor in pixels

Default: 1

Range: [1, 4294967295]

	unsigned int sensor-height-extended

	Height of the extended sensor in pixels

Default: 1

Range: [1, 4294967295]

	double sensor-temperature

	Temperature of the sensor in degree Celsius

Default: 0.0

Range: [-1.79769313486e+308, 1.79769313486e+308]

	None sensor-pixelrates

	Array of possible sensor pixel rates

Default: None

	unsigned int sensor-pixelrate

	Pixel rate

Default: 1

Range: [1, 4294967295]

	unsigned int sensor-adcs

	Number of ADCs to use

Default: 1

Range: [1, 2]

	unsigned int sensor-max-adcs

	Maximum number of ADCs that can be set with “sensor-adcs”

Default: 1

Range: [1, 4294967295]

	bool has-double-image-mode

	Is double image mode supported by this model

Default: False

	bool double-image-mode

	Use double image mode

Default: False

	bool offset-mode

	Use offset mode

Default: False

	None record-mode

	Record mode

Default: <enum UCA_PCO_CAMERA_RECORD_MODE_SEQUENCE of type UcaPcoCameraRecordMode>

	None storage-mode

	Storage mode

Default: <enum UCA_PCO_CAMERA_STORAGE_MODE_FIFO_BUFFER of type UcaPcoCameraStorageMode>

	None acquire-mode

	Acquire mode

Default: <enum UCA_PCO_CAMERA_ACQUIRE_MODE_AUTO of type UcaPcoCameraAcquireMode>

	bool fast-scan

	Use fast scan mode with less dynamic range

Default: False

	int cooling-point

	Cooling point of the camera in degree celsius

Default: 5

Range: [0, 10]

	int cooling-point-min

	Minimum cooling point in degree celsius

Default: 0

Range: [-2147483648, 2147483647]

	int cooling-point-max

	Maximum cooling point in degree celsius

Default: 0

Range: [-2147483648, 2147483647]

	int cooling-point-default

	Default cooling point in degree celsius

Default: 0

Range: [-2147483648, 2147483647]

	bool noise-filter

	Noise filter

Default: False

	None timestamp-mode

	Timestamp mode

Default: <enum UCA_PCO_CAMERA_TIMESTAMP_NONE of type UcaPcoCameraTimestamp>

	string version

	Camera version given as ‘serial number, hardware major.minor, firmware major.minor’

Default: 0, 0.0, 0.0

	bool global-shutter

	Global shutter enabled

Default: False

file

	string name

	Name of the camera

Default:

	unsigned int sensor-width

	Width of the sensor in pixels

Default: 512

Range: [1, 4294967295]

	unsigned int sensor-height

	Height of the sensor in pixels

Default: 512

Range: [1, 4294967295]

	double sensor-pixel-width

	Width of sensor pixel in meters

Default: 1e-05

Range: [2.22507385851e-308, 1.79769313486e+308]

	double sensor-pixel-height

	Height of sensor pixel in meters

Default: 1e-05

Range: [2.22507385851e-308, 1.79769313486e+308]

	unsigned int sensor-bitdepth

	Number of bits per pixel

Default: 8

Range: [1, 32]

	unsigned int sensor-horizontal-binning

	Number of sensor ADCs that are combined to one pixel in horizontal direction

Default: 1

Range: [1, 4294967295]

	unsigned int sensor-vertical-binning

	Number of sensor ADCs that are combined to one pixel in vertical direction

Default: 1

Range: [1, 4294967295]

	None trigger-source

	Trigger source

Default: <enum UCA_CAMERA_TRIGGER_SOURCE_AUTO of type UcaCameraTriggerSource>

	None trigger-type

	Trigger type

Default: <enum UCA_CAMERA_TRIGGER_TYPE_EDGE of type UcaCameraTriggerType>

	double exposure-time

	Exposure time in seconds

Default: 1.0

Range: [0.0, 1.79769313486e+308]

	double frames-per-second

	Frames per second

Default: 1.0

Range: [2.22507385851e-308, 1.79769313486e+308]

	unsigned int roi-x0

	Horizontal coordinate

Default: 0

Range: [0, 4294967295]

	unsigned int roi-y0

	Vertical coordinate

Default: 0

Range: [0, 4294967295]

	unsigned int roi-width

	Width of the region of interest

Default: 1

Range: [1, 4294967295]

	unsigned int roi-height

	Height of the region of interest

Default: 1

Range: [1, 4294967295]

	unsigned int roi-width-multiplier

	Minimum possible step size of horizontal ROI

Default: 1

Range: [1, 4294967295]

	unsigned int roi-height-multiplier

	Minimum possible step size of vertical ROI

Default: 1

Range: [1, 4294967295]

	bool has-streaming

	Is the camera able to stream the data

Default: True

	bool has-camram-recording

	Is the camera able to record the data in-camera

Default: False

	unsigned int recorded-frames

	Number of frames recorded into internal camera memory

Default: 0

Range: [0, 4294967295]

	bool transfer-asynchronously

	Specify whether data should be transfered asynchronously using a specified callback

Default: False

	bool is-recording

	Is the camera currently recording

Default: False

	bool is-readout

	Is camera in readout mode

Default: False

	bool buffered

	TRUE if libuca should buffer frames

Default: False

	unsigned int num-buffers

	Number of frame buffers in the ring buffer

Default: 4

Range: [0, 4294967295]

	string path

	Path to directory containing TIFF files

Default: .

Application Programming Interface

In the introduction we had a quick glance over the basic API used to communicate
with a camera. Now we will go into more detail and explain required background
to understand the execution model.

Instantiating cameras

We have already seen how to instantiate a camera object from a name. If
you have more than one camera connected to a machine, you will most
likely want the user decide which to use. To do so, you can enumerate
all camera strings with uca_plugin_manager_get_available_cameras:

GList *types;

types = uca_plugin_manager_get_available_cameras (manager);

for (GList *it = g_list_first (types); it != NULL; it = g_list_next (it))
 g_print ("%s\n", (gchar *) it->data);

/* free the strings and the list */
g_list_foreach (types, (GFunc) g_free, NULL);
g_list_free (types);

Errors

All public API functions take a location of a pointer to a GError
structure as a last argument. You can pass in a NULL value, in which
case you cannot be notified about exceptional behavior. On the other
hand, if you pass in a pointer to a GError, it must be initialized
with NULL so that you do not accidentally overwrite and miss an
error occurred earlier.

Read more about GErrors in the official GLib
documentation [http://developer.gnome.org/glib/stable/glib-Error-Reporting.html].

Recording

Recording frames is independent of actually grabbing them and is started
with uca_camera_start_recording. You should always stop the
recording with ufo_camera_stop_recording when you finished. When the
recording has started, you can grab frames synchronously as described
earlier. In this mode, a block to uca_camera_grab blocks until a
frame is read from the camera. Grabbing might block indefinitely, when
the camera is not functioning correctly or it is not triggered
automatically.

Triggering

libuca supports three trigger sources through the “trigger-source”
property:

	UCA_CAMERA_TRIGGER_SOURCE_AUTO: Exposure is triggered by the camera
itself.

	UCA_CAMERA_TRIGGER_SOURCE_SOFTWARE: Exposure is triggered via software.

	UCA_CAMERA_TRIGGER_SOURCE_EXTERNAL: Exposure is triggered by an external
hardware mechanism.

With UCA_CAMERA_TRIGGER_SOURCE_SOFTWARE you have to trigger with
uca_camera_trigger:

/* thread A */
g_object_set (G_OBJECT (camera),
 "trigger-source", UCA_CAMERA_TRIGGER_SOURCE_SOFTWARE,
 NULL);

uca_camera_start_recording (camera, NULL);
uca_camera_grab (camera, buffer, NULL);
uca_camera_stop_recording (camera, NULL);

/* thread B */
uca_camera_trigger (camera, NULL);

Moreover, the “trigger-type” property specifies if the exposure should be
triggered at the rising edge or during the level signal.

Grabbing frames asynchronously

In some applications, it might make sense to setup asynchronous frame
acquisition, for which you will not be blocked by a call to libuca:

static void
callback (gpointer buffer, gpointer user_data)
{
 /*
 * Do something useful with the buffer and the string we have got.
 */
}

static void
setup_async (UcaCamera *camera)
{
 gchar *s = g_strdup ("lorem ipsum");

 g_object_set (G_OBJECT (camera),
 "transfer-asynchronously", TRUE,
 NULL);

 uca_camera_set_grab_func (camera, callback, s);
 uca_camera_start_recording (camera, NULL);

 /*
 * We will return here and `callback` will be called for each newo
 * new frame.
 */
}

Bindings

Since version 1.1, libuca generates GObject introspection meta data if
g-ir-scanner and g-ir-compiler can be found. When the XML
description Uca-x.y.gir and the typelib Uca-x.y.typelib are
installed, GI-aware languages can access libuca and create and modify
cameras, for example in Python:

from gi.repository import Uca

pm = Uca.PluginManager()

List all cameras
print(pm.get_available_cameras())

Load a camera
cam = pm.get_camerav('pco', [])

You can read and write properties in two ways
cam.set_properties(exposure_time=0.05)
cam.props.roi_width = 1024

Note, that the naming of classes and properties depends on the GI
implementation of the target language. For example with Python, the
namespace prefix uca_ becomes the module name Uca and dashes
separating property names become underscores.

Integration with Numpy is relatively straightforward. The most important
thing is to get the data pointer from a Numpy array to pass it to
uca_camera_grab:

import numpy as np

def create_array_from(camera):
 """Create a suitably sized Numpy array and return it together with the
 arrays data pointer"""
 bits = camera.props.sensor_bitdepth
 dtype = np.uint16 if bits > 8 else np.uint8
 a = np.zeros((cam.props.roi_height, cam.props.roi_width), dtype=dtype)
 return a, a.__array_interface__['data'][0]

Suppose 'camera' is a already available, you would get the camera data like
this:
a, buf = create_array_from(camera)
camera.start_recording()
camera.grab(buf)

Now data is in 'a' and we can use Numpy functions on it
print(np.mean(a))

camera.stop_recording()

Integrating new cameras

A new camera is integrated by
sub-classing [http://developer.gnome.org/gobject/stable/howto-gobject.html]
UcaCamera and implement all virtual methods. The simplest way is to
take the mock camera and rename all occurences. Note, that if you
class is going to be called FooBar, the upper case variant is
FOO_BAR and the lower case variant is foo_bar.

In order to fully implement a camera, you need to override at least the
following virtual methods:

	start_recording: Take suitable actions so that a subsequent call
to grab delivers an image or blocks until one is exposed.

	stop_recording: Stop recording so that subsequent calls to
grab fail.

	grab: Return an image from the camera or block until one is
ready.

Asynchronous operation

When the camera supports asynchronous acquisition and announces it with
a true boolean value for "transfer-asynchronously", a mechanism must
be setup up during start_recording so that for each new frame the
grab func callback is called.

Cameras with internal memory

Cameras such as the pco.dimax record into their own on-board memory
rather than streaming directly to the host PC. In this case, both
start_recording and stop_recording initiate and end acquisition
to the on-board memory. To initiate a data transfer, the host calls
start_readout which must be suitably implemented. The actual data
transfer happens either with grab or asynchronously.

Tools

Several tools are available to ensure libuca works as expected. All
of them are installed with make install.

uca-camera-control – simple graphical user interface

Records and shows frames. Moreover, you can change the camera properties in a
side pane:

[image: _images/uca-gui.png]
You can see all available options of uca-camera-control with:

$ uca-camera-control --help-all

uca-grab – grabbing frames

Grab frames with

$ uca-grab --num-frames=10 camera-model

store them on disk as frames.tif if libtiff is installed,
otherwise as frame-00000.raw, frame-000001.raw. The raw format
is a memory dump of the frames, so you might want to use
ImageJ [http://rsbweb.nih.gov/ij/] to view them. You can also
specify the output filename or filename prefix with the -o/--output
option:

$ uca-grab -n 10 --output=foobar.tif camera-model

Instead of reading exactly n frames, you can also specify a duration
in fractions of seconds:

$ uca-grab --duration=0.25 camera-model

You can see all available options of uca-grab with:

$ uca-grab --help-all

uca-benchmark – check bandwidth

Measure the memory bandwidth by taking subsequent frames and averaging
the grabbing time:

$ uca-benchmark option camera-model

You can specify the number of frames per run with the -n/--num-frames option, the number of runs with the -r/--num-runs option and test asynchronous mode with the async option:

$ uca-benchmark -n 100 -r 3 --async mock

Type Trigger Source FPS Bandwidth Frames acquired/total
 sync auto 17.57 Hz 4.39 MB/s 300/300 acquired (0.00% dropped)
 async auto 19.98 Hz 4.99 MB/s 300/300 acquired (0.00% dropped)

--- General information ---
Camera: mock
Sensor size: 4096x4096
ROI size: 512x512
Exposure time: 0.050000s

You can see all available options of uca-benchmark with:

$ uca-benchmark --help-all

uca-info – get properties information

Get information about camera properties with:

$ uca-info camera-model

For example:

$ uca-info mock
RO | name | "mock camera"
RO | sensor-width | 4096
RO | sensor-height | 4096
RO | sensor-pixel-width | 0.000010
RO | sensor-pixel-height | 0.000010
RO | sensor-bitdepth | 8
...

uca-gen-doc – generate properties documentation

Generate HTML source code of property documentation of a camera with:

$ uca-gen-doc camera-model

Concert

Concert [https://github.com/ufo-kit/concert] is a light-weight control system interface, which can also control libuca cameras.

Installation

In the official documentation [https://concert.readthedocs.io/en/latest/] you can read how to install [https://concert.readthedocs.io/en/latest/user/install.html] Concert.

Usage

Concert can be used from a session and within an integrated IPython shell or as a library.

In order to create a concert session you should first initialize the session and then start the editor:

$ concert init session
$ concert edit session

You can simply add your camera, for example the mock camera with:

from concert.devices.cameras.uca import Camera

camera = Camera("mock")

and start the session with:

$ concert start session

The function ddoc() will give you an overview of all defined devices in the session:

session > ddoc()
--
Name Description Parameters
--
camera libuca-based camera. Name Unit Description
buffered None info TRUE if libuca should buffer
All properties that are frames
exported by the locked no
underlying camera are exposure_time second info Exposure time in seconds
also visible. locked no
lower -inf second
upper inf second
...

Getting and setting camera parameters

You can get an overview of the camera parameters by calling the dstate() function:

session > dstate()

Name Parameters

camera buffered False
exposure_time 0.05 second
fill_data True
frame_rate 20.0 1 / second
has_camram_recording False
has_streaming True
...

set the value of a parameter with:

session > camera.exposure_time = 0.01 * q.s

and check the set value with:

session > camera.exposure_time
<Quantity(0.01, 'second')>

or you can use the get() and set() methods:

session > exposure_time = camera["exposure_time"]
session > exposure_time.set(0.1 * q.s)
session > exposure_time.get().result()
<Quantity(0.1, 'second')>

In order to set the trigger source property you can use trigger_sources.AUTO, trigger_sources.SOFTWARE or trigger_sources.EXTERNAL:

session > camera.trigger_source = camera.trigger_sources.AUTO

Grabbing frames

To grab a frame, first start the camera, use the grab() function and stop the camera afterwards:

session > camera.start_recording()
session > frame = camera.grab()
session > camera.stop_recording()

You get the frame as an array:

session > frame
array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 255, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8)

Saving state and locking parameters

You can store the current state of your camera with:

session > camera.stash()
<Future at 0x2b8ab10 state=running>

And go back to it again with:

session > camera.restore()
<Future at 0x299f550 state=running>

In case you want to prevent a parameter or all the parameters from being written you can use the lock() method:

session > camera["exposure_time"].lock()
session > camera["exposure_time"].set(1 * q.s)
<Future at 0x2bb3d90 state=finished raised LockError>

lock all parameters of the camera device
session > camera.lock()

and to unlock them again, just use the unlock() method:

session > camera.unlock()

Concert as a library - more examples

You can also use Concert as a library.

For example test the bit depth consistency with:

import numpy as np
from concert.quantities import q
from concert.devices.cameras.uca import Camera

def acquire_frame(camera):
 camera.start_recording()
 frame = camera.grab()
 camera.stop_recording()
 return frame

def test_bit_depth_consistency(camera):
 camera.exposure_time = 1 * q.s
 frame = acquire_frame(camera)

 bits = camera.sensor_bitdepth
 success = np.mean(frame) < 2**bits.magnitude
 print "success" if success else "higher values than possible"

camera = Camera("mock")
test_bit_depth_consistency(camera)

or the exposure time consistency with:

def test_exposure_time_consistency(camera):
 camera.exposure_time = 1 * q.ms
 first = acquire_frame(camera)

 camera.exposure_time = 100 * q.ms
 second = acquire_frame(camera)

 success = np.mean(first) < np.mean(second)
 print "success" if success else "mean image value is lower than expected"

Official Documentation

If you have more questions or just want to know more about Concert, please take a look at the very detailed official documentation [https://concert.readthedocs.io/en/latest/].

Remote access

A Remote access is available for libuca cameras:

	TCP-based network bridge camera
	Installation

	Usage

	GObject Tango device
	Architecture
	Attributes

	Acquisition Control

	Plugins

	Installation
	Build

	Setup in Tango Database / Jive

	FAQ

	Open Questions, Missing Features etc.

	Python Tango server
	Installation

	Usage

The HZG Tango server [https://bitbucket.org/hzgwpn/libuca-jni] can also be used with libuca cameras.

TCP-based network bridge camera

uca-net [https://github.com/ufo-kit/uca-net] is a transparent TCP-based network bridge camera for remote access of libuca
cameras.

Installation

The only dependency is libuca itself and any camera you wish to access.

Clone the repository:

$ git clone https://github.com/ufo-kit/uca-net.git

and create a new build directory inside:

$ cd uca-net/
$ mkdir build

The installation process is the same as by libuca:

$ cd build/
$ cmake ..
$ make
$ sudo make install

Usage

You can start a server on a remote machine with:

$ ucad camera-model

and connect to it from any other machine, for example:

$ UCA_NET_HOST=foo.bar.com:4567 uca-grab -n 10 net # grab ten frames
$ uca-camera-control -c net # control graphically

GObject Tango device

UcaDevice is a generic Tango Device that wraps libuca in order to
make libuca controlled cameras available as Tango devices.

Note

The documentation of UcaDevice can be outdated.

Architecture

UcaDevice is derived from GObjectDevice and adds libuca specific features like
start/stop recording etc. The most important feature is acquisition control.
UcaDevice is responsible for controlling acquisition of images from libuca. The
last aquired image can be accessed by reading attribute SingleImage.
UcaDevice is most useful together with ImageDevice. If used together, UcaDevice
sends each aquired image to ImageDevice, which in turn does configured
post-processing like flipping, rotating or writing the image to disk.

Attributes

Besides the dynamic attributes translated from libuca properties
UcaDevice has the following attributes:

	NumberOfImages (Tango::DevLong): how many images should be
acquired? A value of -1 means unlimited (read/write)

	ImageCounter (Tango::DevULong): current number of acquired images
(read-only)

	CameraName (Tango::DevString): name of libuca object type
(read-only)

	SingleImage (Tango::DevUChar): holds the last acquired image

Acquisition Control

In UcaDevice acquisition control is mostly implemented by two
yat4tango::DeviceTasks: AcquisitionTask and GrabTask.
GrabTask’s only responsibility is to call grab on libuca
synchronously and post the data on to AcquisitionTask.

AcquisitionTask is responsible for starting and stopping GrabTask and
for passing image data on to ImageDevice (if exisiting) and to
UcaDevice for storage in attribute SingleImage. It counts how
many images have been acquired and checks this number against the
configured NumberOfImages. If the desired number is reached, it
stops GrabTask, calls stop_recording on libuca and sets the
Tango state to STANDBY.

Plugins

As different cameras have different needs, plugins are used for special
implementations. Plugins also makes UcaDevice and Tango Servers based on
it more flexible and independent of libuca implementation.

	PCO: The Pco plugin implements additional checks when writing ROI values.

	Pylon: The Pylon plugin sets default values for roi-width and
roi-height from libuca properties roi-width-default and
roi-height-default.

Installation

Detailed installation depends on the manifestation of UcaDevice. All
manifestations depend on the following libraries:

	YAT

	YAT4Tango

	Tango

	GObjectDevice

	ImageDevice

Build

export PKG_CONFIG_PATH=/usr/lib/pkgconfig
export PYLON_ROOT=/usr/pylon
export LD_LIBRARY_PATH=$PYLON_ROOT/lib64:$PYLON_ROOT/genicam/bin/Linux64_x64
git clone git@iss-repo:UcaDevice.git
cd UcaDevice
mkdir build
cd build
cmake ..
make

Setup in Tango Database / Jive

Before ds_UcaDevice can be started, it has to be registered manually
in the Tango database. With Jive the following steps are necessary:

	Register Server Menu Tools → Server Wizard Server name → ds_UcaDevice
Instance name → my_server (name can be chosen freely) Next Cancel

	Register Classes and Instances In tab Server: context menu on
ds_UcaDevice → my_server → Add Class Class: UcaDevice Devices:
iss/name1/name2 Register server same for class ImageDevice

	Start server

export TANGO_HOST=anka-tango:100xx
export UCA_DEVICE_PLUGINS_DIR=/usr/lib(64)
ds_UcaDevice pco my_server

	Setup properties for UcaDevice context menu on device → Device wizard
Property StorageDevice: address of previously registered ImageDevice
instance

	Setup properties for ImageDevice context menu on device → Device wizard
PixelSize: how many bytes per pixel for the images of this camera?
GrabbingDevice: address of previously registered UcaDevice instance

	Finish restart ds_UcaDevice

FAQ

UcaDevice refuses to start up…? Most likely there is no instance
registered for class UcaDevice. Register an instance for this class and
it should work.

Why does UcaDevice depend on ImageDevice? UcaDevice pushes each new
Frame to ImageDevice. Polling is not only less efficient but also prone
to errors, e.g. missed/double frames and so on. Perhaps we could use the
Tango-Event-System here!

Open Questions, Missing Features etc.

	Why do we need to specify Storage for UcaDevice and GrabbingDevice
for ImageDevice?

ImageDevice needs the Tango-Address of UcaDevice to mirror all Attributes and
Commands and to forward them to it. UcaDevice needs the Tango-Address of
ImageDevice to push a new frame on reception. A more convenient solution could
be using conventions for the device names, e.g. of the form
$prefix/$instance_name/uca and $prefix/$instance_name/image. That way
we could get rid of the two Device-Properties and an easier installation
without the process of registering the classes and instances in Jive.

	Why does UcaDevice dynamically link to GObjectDevice?

There is no good reason for it. Packaging and installing would be easier if we
linked statically to GObjectDevice because we would hide this dependency.
Having a separate GObjectDevice is generally a nice feature to make
GObjects available in Tango. However, there is currently no GObjectDevice
in use other than in the context of UcaDevice.

	Why must the plugin name be given as a command line parameter instead of a
Device-Property?

There is no good reason for it. UcaDevice would be easier to use, if the
plugin was configured in the Tango database as a Device-Property for the
respective server instance.

Python Tango server

libuca/tango is a Python-based Tango server.

Installation

In order to install libuca/tango you need

	PyTango [http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/index.html] and

	tifffile [https://pypi.python.org/pypi/tifffile]

Go to the libuca directory and install the server script with:

$ cd tango
$ sudo python setup.py install

and create a new TANGO server Uca/xyz with a class named Camera.

Usage

Before starting the server, you have to create a new device property camera
which specifies which camera to use. If not set, the mock camera will be used
by default.

Start the device server with:

$ Uca device-property

You should be able to manipulate camera attributes like exposure_time and to store frames using a Start, Store, Stop cycle:

import PyTango

camera = PyTango.DeviceProxy("foo/Camera/mock")
camera.exposure_time = 0.1
camera.Start()
camera.Store('foo.tif')
camera.Stop()

Index

 _static/ajax-loader.gif

_images/architecture.png
APIs Applications

[
JLIL

andor

pco

an

_images/uca-gui.png
cqui
iSta

Histogram

Minimum. Maximum

¥ Live Update

Distribution: 1 = 2354,43 o = 187,22 min = 1720 max = 4095

x =451 y=0 val = 1828
Preview

“IProper

Property Value |
name file camera

sensor-width 832

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome

 		
 Quickstart

 		
 Installation

 		
 Installing packages

 		
 Building on Linux

 		
 Building on Windows

 		
 Usage

 		
 Grabbing frames

 		
 Getting and setting camera parameters

 		
 Supported cameras

 		
 Property documentation

 		
 mock

 		
 pco

 		
 file

 		
 Application Programming Interface

 		
 Instantiating cameras

 		
 Errors

 		
 Recording

 		
 Triggering

 		
 Grabbing frames asynchronously

 		
 Bindings

 		
 Integrating new cameras

 		
 Asynchronous operation

 		
 Cameras with internal memory

 		
 Tools

 		
 uca-camera-control – simple graphical user interface

 		
 uca-grab – grabbing frames

 		
 uca-benchmark – check bandwidth

 		
 uca-info – get properties information

 		
 uca-gen-doc – generate properties documentation

 		
 Concert

 		
 Installation

 		
 Usage

 		
 Getting and setting camera parameters

 		
 Grabbing frames

 		
 Saving state and locking parameters

 		
 Concert as a library - more examples

 		
 Official Documentation

 		
 Remote access

 		
 TCP-based network bridge camera

 		
 Installation

 		
 Usage

 		
 GObject Tango device

 		
 Architecture

 		
 Installation

 		
 FAQ

 		
 Open Questions, Missing Features etc.

 		
 Python Tango server

 		
 Installation

 		
 Usage

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

